ABOUT RELY-MEASURE
您的当前位置:主页 > 使用说明 >

具有悬浮结构的MEMS器件表面微加工方法

发布时间:2020-12-05 12:12 作者:凯旋门现金官网

  因其高线性度、低插损、低能耗、高开关比以及可集成性等优异性能获得了广泛关注。MEMS开关可以被应用于自动化设备、宽带仪器仪表、开关矩阵以及数字衰减器、卫星开关网络、国防系统、智能基站天线等多种可重构

  开关梁作为MEMS开关结构中最重要的部分,是开关的主要功能部件。开关的所有功能都是通过此悬浮结构实现。开关的下拉时间、释放时间以及下拉力等关键性能参数都受到梁结构的影响。除了杨氏模量等开关梁自身参数,开关梁与基底之间的间隙设计对开关电气性能也有重要的影响。开关间隙需要合理设计并尽可能小。而小开关间隙增加了开关加工工艺困难性及复杂程度。

  在表面微加工工艺过程中,常常利用干法刻蚀牺牲层以释放悬浮结构。使用干法刻蚀工艺不需要考虑液体表面张力带来的影响,并且对后续工艺的兼容性更好。本文选用反应离子刻蚀工艺去除聚酰亚胺牺牲层。但是基于纯氧等离子体的聚酰亚胺牺牲层干法刻蚀工艺需要较长作用时间。与此同时,许多用于刻蚀聚酰亚胺这类聚合物的刻蚀剂会与氮化硅结构层反应并对其产生刻蚀效果。所以在RIE工艺中需要谨慎选择添加的刻蚀气体以避免对结构层的过刻蚀。

  本文研究了对聚酰亚胺牺牲层的RIE刻蚀工艺流程。应用此工艺,得到了具备低下拉电压的多层结构梁MEMS开关。这一工艺流程相比湿法刻蚀消除了梁与基底间的粘连问题并简化了工艺步骤,并且相对氧等离子体刻蚀提升了刻蚀速率。与此同时,这一工艺流程提高了刻蚀选择性并通过调整刻蚀时间、功率和混合气体比例等参数解决了氮化硅结构层的过刻蚀问题。

  本文设计了一种具有固支梁结构的接触式并联MEMS开关,如图1(a)所示。在硅片上生长一层二氧化硅作为绝缘层,之后在其上制备开关。由于开关锚点处往往是应力分布集中区域,故而开关梁在锚点处设计为梯形结构,以这种渐变区域作为缓解开关梁机械疲劳的过渡带。使用多层梁设计达到低残余应力的目的。所设计多层梁由顶层金属层,氮化硅结构层以及底层金属层构成。

  图1(b)中展示了开关梁的三层结构。其中,顶层金属厚度为0.5μm,作为开关的上电极。当驱动电压施加在CPW地线与顶层金属层间时,给了开关梁一个静电下拉力。梁的中间层由1μm厚氮化硅淀积而成,作为开关梁结构层并起到绝缘作用。当开关被下拉至闭合位置时,梁下的两块相互分离的金属触点区域将CPW的信号线与地线相连接。相较于纯金梁,所提出的使用了应力梯度补偿方法的三明治结构开关梁的应力分布更低。梁上设计了相应的释放孔以加速牺牲层刻蚀速率。并且这些释放孔进一步释放了开关梁的部分残余应力,并降低了梁的杨氏模量。

  图2展示了相应的加工工艺流程。首先在硅片上热氧化一层1μm厚的二氧化硅绝缘层。然后,在二氧化硅层上溅射一层厚度为0.5μm的金并通过光刻及剥离工艺进行图形化,以此作为CPW传输线。随后,旋涂聚酰亚胺作为牺牲层。然后在聚酰亚胺层上利用光刻图形化出金属触点区域,并使用RIE对其进行刻蚀。为了避免使用剥离工艺损伤牺牲层,采用正胶掩膜及湿法刻蚀工艺对金属触点进行图形化。使用RIE工艺在牺牲层上刻蚀出锚点区域。之后使用PECVD淀积一层氮化硅结构层。使用湿法刻蚀对溅射得到的顶层金属层进行图形化处理。在使用RIE工艺对氮化硅结构层进行图形化处理后,最后再一次使用RIE工艺去除聚酰亚胺牺牲层以释放开关梁结构,这是整个加工工艺流程的关键点。

  RIE工艺是干法刻蚀工艺的一种。这种工艺介于纯化学刻蚀与纯物理刻蚀这两种极端工艺之间。在刻蚀过程中,刻蚀剂被赋予额外物理能量以加速反应过程,形成挥发产物。与此同时,被称为离子束刻蚀或离子轰击的纯物理刻蚀过程也在刻蚀过程中起到了重要作用。在RIE工艺过程中,刻蚀剂通常是刻蚀剂分子、自由基和离子等化学物质。这些物质与需要刻蚀的目标薄膜发生化学反应以实现对目标材料的可控去除并生成挥发性反应生成物,由腔体中泵出到设备外。

  在RIE刻蚀工艺中,使用O2与CF4混合气体作为刻蚀聚合物的刻蚀剂。一方面,相较于纯氧等离子体,添加CF4后气体中氧原子浓度有所增加,增强了氧化反应。另一方面,氟原子可以激活聚酰亚胺表面并破坏其分子结构,产生更多自由基位点,进一步提升刻蚀速率。但是混合气体的刻蚀速率增长与所注入CF4的浓度增长并不完全一致。过量存在的氟原子会与氧原子竞争聚酰亚胺表面的自由基位点,形成钝化层,对刻蚀过程产生抑制作用。

  不论氧气中的CF4浓度如何变化,刻蚀和抑制作用都同时存在。主要化学反应是由等离子体中氧原子与氟原子的相对密度决定的。此外,还应考虑CF4对氮化硅的刻蚀作用。由于CF4/O2混合气体对氮化硅和聚酰亚胺同时具有刻蚀作用,通过调整二者的比例可以在对聚酰亚胺的高刻蚀速率和保护氮化硅结构之间达到平衡。

  在制备过程中遇到了对氮化硅的过刻蚀以及对聚酰亚胺层的欠刻蚀等问题。释放牺牲层是加工工艺流程的最后一步,也是决定悬浮结构是否加工成功的关键步骤。过刻蚀或欠刻蚀是牺牲层释放的常见问题。干法释放牺牲层一般采用氧等离子体刻蚀工艺。但是,如果仅仅采用氧气作为刻蚀剂,刻蚀速率过低以至于无法有效去除聚酰亚胺层。因此我们采用以氧气和四氟化碳气体作为刻蚀剂的RIE工艺替代氧等离子体。开关在400W功率下使用O2(100sccm)和CF4(20sccm)作为刻蚀剂进行5分钟干法刻蚀。将此过程循环7次,间隔时间30s。在RIE干法刻蚀后,观察到器件发生过刻蚀,如图3(a)所示。这要归因于刻蚀剂中的四氟化碳(氮化硅的刻蚀)。在这种情况下,需要降低RIE刻蚀工艺中的功率和气体流量等参数。因为RIE的刻蚀速率会随着射频功率的提升而增加。射频功率的增大对RIE过程中的物理和化学刻蚀过程同时产生影响。物理离子轰击和溅射刻蚀作用在刻蚀功率提升的情况下同时得到增强。与此同时,较高射频功率带来的更高的气体分子解离程度,导致反应离子增多,使得化学刻蚀作用增强。造成这一现象的原因是,随着射频功率的提升,离子和自由基密度的增加。离子和自由基密度的增加促进了物理和化学刻蚀作用,因此提升了刻蚀速率。但是过高的射频功率会导致离子轰击作用过强,从而对薄膜表面造成损伤。同时长时间暴露在高射频功率下使得聚酰亚胺过热碳化,留下难以去除的残留碳化物,如图3(b)。

  图4开关欠刻蚀显微镜照片:(a)所制备开关俯视图;(b)开关梁释放孔局部发大图

  观察到当RIE时间减少到2分钟时,牺牲层无法被完全去除。使用此刻蚀时间,开关的结构保持完整,如图4(a)所示。该工艺流程的关键参数是刻蚀时间。作为牺牲层的聚酰亚胺并没有被完全去除,通过观察开关细节照片(如图4(b)),可以观察到CPW上残留的聚酰亚胺,更不要说开关梁下表面的聚酰亚胺残留。这一结果表明刻蚀时间在释放过程中起着重要作用。由于开关梁遮挡了部分牺牲层,很难完全清除梁下聚酰亚胺。所以需要增加RIE刻蚀时间。

  保持功率等其余参数不变,将RIE刻蚀过程进行三轮,间隔30秒。第一轮和最后一轮刻蚀时间为5分钟,中间一轮为2分钟。为了检查梁下牺牲层刻蚀情况,有必要对开关的侧面轮廓进行查验。过刻蚀会引起开关梁塌陷。而从开关的俯视图是无法观察到这种塌陷现象的。图5(a)为牺牲层释放后开关的表面形貌特征。从俯视图观察开关,可以认为牺牲层已经完全被去除,并且开关梁的结构保持完整。但实际上氮化硅结构层在RIE刻蚀过程中遭受了过刻蚀。过刻蚀造成了开关梁边缘卷曲,开关梁由于缺乏氮化硅结构层而发生塌陷,如图5(b)所示。由于CF4对氮化硅的腐蚀作用,在去除聚酰亚胺牺牲层时同时刻蚀了氮化硅结构层。

  为了在完全去除牺牲层的同时保持氮化硅结构层完整,进一步对RIE工艺参数进行了优化。以150W功率对牺牲层进行三轮共计6分钟刻蚀,每轮进行2分钟,O2和CF4的气体流量分别维持在50sccm和5sccm。刻蚀过后,使用光学显微镜及扫描电子显微镜(SEM)对开关氮化硅结构层进行了观察。图6(a)显示了一个释放良好的开关梁的扫描电子显微镜照片。之后将开关梁挑起使之底面朝上观察定层金属层下的氮化硅结构层。通过图6(b)中的开关梁片段可以观察到形貌完整的氮化硅层。

  图6金属层下氮化硅结构层检验:(a)开关梁部分扫描电镜照片;(b)开关梁翻转后确认氮化硅层状态

  通过图7所示开关的SEM照片确认了开关制备成功。梁结构没有遭到破坏并且牺牲层被完全去除。图7(d)展示了开关梁的倾斜角度SEM照片,梁下间隙清晰且无塌陷发生。该开关的成功制备验证了RIE刻蚀工艺参数的有效性。初步探究了释放孔尺寸对侧向钻蚀速率的影响。结果表明,在一定的工艺参数(功率、刻蚀气体流量等)下,释放孔尺寸对侧向钻蚀速率影响很小。在优化后的工艺参数下,侧向钻蚀速率达到了1.3μm/min。

  图7制备所得开关扫描电镜照片:(a)开关整体结构;(b)锚点处局部放大图;(c)开关梁局部放大图;(d)开关梁倾斜角度细节图

  如图8(a)所示,成功制备的开关使用测试系统进行了V-I测试以验证该开关能够正常工作。使用探针台及Agilent4155B半导体参数分析仪对开关的V-I特性进行测量。首先通过探针在开关的多层结构梁以及CPW传输线之间施加一个直流电压偏置。图8(b)展示了测量的V-I特性曲线mA电流由CPW信号线流入地线。在施加在地线的电压的线性增加下,电流的突变证实了MEMS开关能够正常工作。这证明了开关加工工艺流程的正确性。如果氮化硅结构层发生过刻蚀而不完整,则开关梁在施加的电压大于下拉电压后,由于作为上电极的顶部金属层会接触到地线,开关会立刻弹回从而使回路断开。

  本文提出了一种适用于具有悬浮结构的MEMS器件表面微加工方法。基于聚酰亚胺牺牲层技术,在牺牲层上淀积并图形化氮化硅及金属层作为悬浮结构。以O2和CF4作为刻蚀剂,使用RIE刻蚀工艺干法释放牺牲层以得到所需器件。在150W功率条件下,选择流量分别为50sccm和5sccm的O2和CF4作为刻蚀气体,侧向钻蚀速率达到1.3μm/min。结果显示,氮化硅结构层在干法刻蚀过程中能够得到良好的保存。该制备工艺的优点是消除了粘连问题并简化了工艺流程。本文所提出的工艺流程可以为MEMS开关制备工艺提供新的思路。

  低功耗可利用MEMS加速计(Accelerometer)传感器来增加电池寿命。传感器变得越来越省电,所嵌入的各种功能也有助于...

  随着微电子机械系统(MEMS)技术的不断成熟,以及电子学系统发展对器件小型化的要求,作为MEMS技术....

  MEMS器件和集成电路(IC)芯片是通过类似的过程制造的。两者都始于基础衬底晶圆(通常是硅或玻璃),....

  博世集团是世界先进的技术及服务供应商。从MEMS技术问世开始,博世始终处于MEMS(微机电系统)技术....

  减少极板之间的距离也会提高性能,但这就产生了另一个一直困扰静电MEMS问题——静摩擦。如果极板太近,....

  基于MEMS加速度计的倾角测量模块具有体积小、质量轻、成本低、抗冲击、可靠性高等优点。对有加速度干扰....

  为了提高汽车设计的安全性,村田(Murata)近期发布了其最新6轴一体封装、3D MEMS惯性力传感....

  MEMS有各种尺寸和功能,从微型化的传感器芯片,到独特的微纳米架构,可以感知、测量、传输并控制几乎所有传感模式...

  MEMS传感器 应用于无创胎心检测,检测胎儿心率是一项技术性很强的工作,由于胎儿心率很快,在每分钟l....

  生态农业是知识密集和技术密集的领域。目前作为“电子感官”的传感技术在农业生产、生物学研究、农药残留量....

  随着时间的推移,压力传感器系统的电子器件,被集成至含有处理器的 IC 中,成本和尺寸都获得缩减。汽车....

  MEMS谐振陀螺仪是一种测量角速度的惯性传感器,具有体积小、重量轻、成本低、易集成等诸多优点,因此在....

  该产品主要由组装在摄像机模块上的可调谐MEMS滤光器和控制板组成。RaspberryPi用于捕获参数....

  飞控是由主控MCU和惯性测量模块(IMU,Inertial Measurement Unit)组成。....

  歌尔股份是声学MEMS领域的领先者,公司成立于2001年6月,2008年5月在深交所上市,是全球布局....

  本文研究的MEMS加速度计为压阻式硅微加速度计,量程为10 gn,其结构如图1所示。MEMS加速度计....

  市场广阔。MEMS是继微电子之后又一个颠覆性技术,也是被发达国家封锁和垄断的高新技术。MEMS技术属....

  据越牛新闻报道,改项目投产后将有力引领和带动柯桥芯片产业的培育发展,助力绍兴打造1000亿级集成电路....

  针对传感器技术在国内的专利申请状况,本文检索结合关键词检索、IPC检索、逻辑表达式检索等方式,检索了....

  Yang Chunhua和Liu Qin等人通过对MEMS加速度计的冲击试验,发现悬臂梁、梳齿的受力....

  Fact.MR指出,全球MEMS传感器市场在本质上是稳固的,一些电子和半导体跨国公司(如意法半导体,....

  这种传感器芯片采用使用热线的质量流量检测方式。其芯片中央具有加热器,上游侧的热电堆 (A)及下游侧热....

  睿创微纳产品主要包括非制冷红外热成像MEMS芯片、红外热成像探测器、红外热成像机芯(成像机芯和测温机....

  MEMS的制造主要采用Si材料,它与IC的不同在于,IC是电信号的传输、转换及处理,而MEMS是电信....

  通过成立公共服务平台,建设化合物半导体及MEMS工艺平台,开发可产业化且具备市场竞争力的新材料、新器....

  MEMS产业高技能人才的素质要求主要包括专业能力、个人特质、方法能力和社会能力四个部分,具体体现在责....

  Rajendra K S等人在2003年就在MEMS工艺的基础上制备出了微型的压电式能量收集器,可实....

  MEMS与传感器产业联盟(MSIG)的首席战略官Steve Whalley认为MEMS工艺不同于IC....

  首先简介ADISl6355AMLZ型MEMS的原理、构成及应用。在此基础上,搭建一个硬件平台,采用内....

  MEMS是随着半导体集成电路微细加工技术和超精密机械加工技术的发展而发展起来的。

  低成本的GPS干扰和欺骗技术的可用性使得仅GPS的定位和导航解决方案对于在战场环境中的士兵而言,成为....

  MEMS器件利用半导体加工技术来制造三维机械结构,三种最常用的MEMS制造技术包括体微加工(Bulk....

  随着电子产品的微型化和智能化,MEMS(Micro-electromechanical System....

  ●全面的RF、数字和直流仪器产品组合—您可以自定义新的STS配置并升级现有测试仪,以纳入您需要的仪器....

  MEMS振荡器、谐振器和时钟产品是计时市场中新的、迅速成长的一部分。这些产品正在取代传统的石英和时钟....

  尽管近几年MEMS增速放缓,但是依托曾经在市场中发展的基数,地位依然很稳。所以,当物联网、智能工业、....

  惯性导航技术不仅在军事领域,并且在陆地、航空、航天以及航海等许多领域都有广泛的应用。

  Bosch Sensortec首次将博世Light Drive技术集成于系统之中。它彻底改变了全天候....

  基于 MEMS 技术的微型扬声器或将变革移动通讯设备的语音和音乐播放。新创公司 xMEMS 发表全球....

  微机电系统(MEMS)技术使用半导体制造工艺来生产尺寸范围从小于一微米到几毫米的小型化机械和机电元件....

  智能手机有许多零组件,包含:可检测手机的运动的加速度计和陀螺仪。测量手机的环境的光,温度,压力和湿度....

  MEMS即微机电系统,是集微型传感器、执行器、机械结构、电源能源、信号处理、控制电路、高性能电子集成....

  为什么我国的MEMS行业这么落后?原因是很多的,当然,首先第一条就是我们比别人发展的晚,ADI从19....

  MEMS传感器是物联网、人工智能、5G等新一代信息技术的感知基础和数据来源,已成为推动经济社会发展的....

  MEMS是微传感器(Micro-Electro-Mechanical System)的缩写,它是一种....

  扬声器并不是我们传统报道的一部分,但今天xMEMS宣布的新扬声器技术是大家应该注意的。

  MEMS传感器行业是一个新兴的行业,在中国商业化的时间不到10年,而在全球也只有20余年的产业化历程....

  在整个MEMS生态系统中,MEMS封装发展迅速,晶圆级和3D集成越来越重要。

  MEMS产品是指尺寸在毫米级甚至微米级的微型机电装置,主要分为微型传感器(如MEMS麦克风和压力传感....

  传感技术通过先进精确的定位/运动检测,帮助用户在虚拟空间中获得现实的体验感。TDK最新的AR/VR系....

  二十年前,专门研究射频电路的工程师设想了一种“理想的开关”。这种开关“打开”时,它将具有超低电阻,“....

  硬件,尤其是MEMS传感器,仍将会是终端装置中不可或缺的部份,但展望未来,软件在为用户带来价值方面也....

  MEMS,微机电系统,是1959年12月由理查德·费曼最早提出的概念,是将微观模拟机械元件机构、微型....

  传统机械加工方法指利用大机器制造小机器,再利用小机器制造微机器。可以用于加工一些在特殊场合应用的微机....

  MEMS技术是随着集成电路,尤其是超大规模集成电路发展起来的一门新技术,经过几代科学家的努力,MEM....

  MEMS硅晶振采用硅为原材料,采用先进的半导体工艺制造而成。因此在高性能与低成本方面,有明显于石英的....

  了减小其无线收发器的尺寸、重量以及功耗,美国国家航空航天局(NASA)已经开始着手一项开发MEMS技....

  据报道,在美国内华达州拉斯维加斯的CES®电子消费展上,Bosch Sensortec推出了用于智能....

  传感技术是数据采集的入口,也是实现大数据分析的基础与核心。随着5G、物联网、人工智能、自动驾驶等技术....

  MEMS传感器即微机电系统(MicroelectroMechanicalSystems)在微电子技术....

  SMI是一家领先的研发和生产基于MEMS技术压力传感器的公司,为汽车应用,医疗设备应用和工业应用提供压力传...

  MODEL 610是TE公司推出一款小尺寸角速率传感器(陀螺仪),利用可靠的硅MEMS传感元件、定制电子元件和...

  在技术应用中测量倾斜度,加速度和振动需要高精度的惯性传感器:MEMS(微型机电系统)系列传感器采用单晶硅传...

  First Sensor致力于运用先进的模块化技术平台开发和制造定制化MEMS质量流量传感器

  使用诸多医疗设备时,必须监测控制空气流量、气体流量以及管线压力和治疗压力。这些医疗设备包括呼吸机、麻醉设备...

  SMI的低压MEMS传感器系列,数字和模拟输出,提供完整的压力校准和温度补偿,可用于仪表,差分,不对称差分...

  具有MEMS麦克风传感器参考设计的录音机。该参考设计演示了基于SAMG53微控制器和两个数字MEMS麦克风传...

  MEMS(Micro-Electro-Mechanical System)是指集机械元素、微型传感器以及信号处理和控制电路、接口电路、通信...


凯旋门现金官网
Copyright © 2018 凯旋门现金官网 All Rights Reservrd 版权所有 技术支持:捷搜网络
网站部分图片来自互联网,如有侵权,请及时通知,我们会及时更换!